
Hardware Modeling Course Final Project 

QIAU - Summer 2013 

 

Design an 8-bit CPU according to the following description: 

 

1. The CPU includes 8 internal registers named as R0 to R8. 

2. CPU operation is based on load-store mechanism. It means that the operands should be 

transferred from memory to general purpose registers before any processing.  

3. CPU supports the following addressing modes: 

• Immediate (LDI instruction) 

• Direct (LD and ST instructions) 

• Register (all arithmetic and MOV instructions) 

• Absolute (JZ and JNZ instructions) 

 

4. It is able to run the below instructions: 

 

LDI Rx, immediate_value //Rx ← immediate_value 

LD Rx, direct_add  //Rx ← Mem[direct_add] 

ST Rx, direct_add  //Mem[direct_add] ← Rx  

MOV Rx, Ry   //Rx ← Ry 

CLR Rx    //Rx ← 0 

ADD Rx, Ry   //Rx ← Rx+Ry 

SUB Rx, Ry   //Rx ← Rx-Ry 

INC Rx    //Rx ← Rx+1 

DEC Rx    //Rx ← Rx-1 

JZ absolute_add  //if R0=0 then PC ← absolute_add 

JNZ absolute_add  //if R0≠0 then PC ← absolute_add 

HLT     //halt the program execution 

 

5. Each instruction is a 16-bit word while the operand length is 8 bits. 

6. All data and instructions are stored in a single memory module. The memory is word addressable 

and the 8-bit data is stored in the lower byte of the word. 

7. The CPU code should be synthesizable. 

 

Write the CPU code, and then connect it to a memory module inside a testbench to start execution of 

the instructions inside memory. Place the following code in the memory and run it on your CPU. 

 

CLR R2   

LDI R1, 5 

LDI R0, 10 //initialize the R0 as the loop counter 

ADD R2, R1 //add R1 to R2 one more time 

DEC R0  //decrement counter 

JNZ 3  //if counter≠0, jump to mem[3] (ADD R2, R1) 

ST R2, 17 //store the final result in low byte of mem[17] 

HLT 

 


